

Python Developer's Guide

Version 2.0.0.0

July 7, 2017

ii Version 2.0.0.0 July 7, 2017

Copyright notice

The information contained in this manual is subject to change without notice. Peavey Electronics is not liable for

improper installation or configuration. The information contained herein is intended only as an aid to qualified

personnel in the design, installation and maintenance of engineered audio systems. The installing contractor or end

user is ultimately responsible for the successful implementation of these systems.

All creative content in this manual, including the layout, art design, content, photography, drawings, specifications

and all other intellectual property is Copyright © 2016 Peavey Electronics Corporation. All Rights Reserved. Features

& specifications subject to change without notice. All other registered trademarks or trademarks are the property of

their respective owners.

Email:mmtechsupport@peavey.com (mailto:mmtechsupport@peavey.com).

Scope

This guide describes how to use the Python programming language to customize the control interfaces of NWare

projects.

This guide has been written for users who already understand the basic concepts of a programming language, but want

to know more about using Python with NWare and MediaMatrix hardware devices.

This guide does not include a full Python language reference. To view a full language reference, refer to the language

reference for Python 2.4 on the Python website (http://docs.python.org/release/2.4/).

mailto:mmtechsupport@peavey.com
http://docs.python.org/release/2.4/

July 7, 2017 Version 2.0.0.0 iii

Contents

Chapter 1 Introduction ... 1

What is Python? ... 2
Installing Python on your PC .. 2
Basic Python examples .. 3

Chapter 2 Getting started with Python in NWare ... 7

Introduction ... 8
Building a simple Python example in NWare ... 9
Changing Python code while a project is running ..11
Debugging Python scripts...11
An example with multiple input devices ..12
Building an example that processes both inputs and outputs ..13

Chapter 3 Using more advanced features ... 17

Controlling the execution of Python code ...18
Using the state variable to store a value persistently ...19
Storing and reusing values from Python code..21
Using threading to run scripts autonomously ...24

Chapter 4 Python reference .. 27

Predefined Variables ..28
Input and output control functions ..28
Threaded script functions ...29
Serial port control functions ..31
Support for Python modules ...32

July 7, 2017 Version 2.0.0.0 1

In This Chapter

What is Python? .. 2

Installing Python on your PC .. 2

Basic Python examples ... 3

Chapte r 1

Introduction

Chapter 1 - Introduction

2 Version 2.0.0.0 July 7, 2017

.

What is Python?

Python is a widely used, high-level programming language. It is designed to be clear to read,

and its syntax allows programmers to express concepts in fewer lines than in other languages,

such as C++ or Java. Python is used by many well-known organizations, including Google and

Yahoo, as part of their search engine technology, and Industrial Light and Magic, in the

production of special effects.

Here are some useful Python resources:

 http://www.python.org/ (http://www.python.org/)

 https://www.youtube.com/watch?v=dYRJJ_w3lNY

(https://www.youtube.com/watch?v=dYRJJ_w3lNY)

 https://www.youtube.com/results?search_query=python+tutorial

(https://www.youtube.com/results?search_query=python+tutorial)

 http://www.learnpython.org/ (http://www.learnpython.org/)

 https://www.codecademy.com/ (https://www.codecademy.com/).

Installing Python on your PC

In order to try out some basic examples to introduce yourself to Python, we recommend that

you install Python on your PC. That way, you can try out some code before you switch to

NWare and start using Python in a project.

Note:

 We recommend that you use Python 2.4, as this is the version supported by MediaMatrix.

If you install a different version, the list of supported commands and syntax may be

different.

 You do not need to install Python on your PC to use Python in an NWare project.

However, it is useful for test purposes.

 To install Python

1. Open a browser and download Python 2.4

(https://www.python.org/ftp/python/2.4/python-2.4.msi).

Information on the release can be found here:

https://www.python.org/download/releases/2.4/

(https://www.python.org/download/releases/2.4/).

2. Run the msi installer and follow the instructions to install Python 2.4.

A Python 2.4 folder will be added to the Start menu.

http://www.python.org/
https://www.youtube.com/watch?v=dYRJJ_w3lNY
https://www.youtube.com/results?search_query=python+tutorial
http://www.learnpython.org/
https://www.codecademy.com/
https://www.python.org/ftp/python/2.4/python-2.4.msi
https://www.python.org/download/releases/2.4/

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 3

.

Basic Python examples

Before you start using Python in NWare, try out some basic examples in the Python shell.

When you are familiar with how these examples work, we recommend looking online for

others, so you are comfortable with the syntax of a broader range of language concepts.

This section assumes you have installed Python 2.4.

Starting the Python shell

 On the Start menu, point to All Programs/Python 2.4, and then click IDLE (Python

GUI).

The Python Shell is displayed.

Printing hello world

 At the >>> prompt, type:

print "hello world!"

The Python Shell will display the following message.

hello world!

Using basic variables

1. Assign values to some variables:

>>> one = 1

>>> two = 2

>>> three = one + two

Chapter 1 - Introduction

4 Version 2.0.0.0 July 7, 2017

>>> hello = "hello"

>>> world = "world"

>>> helloworld = hello + " " + world

2. Try printing the values of the variables:

>>> three

3

>>> helloworld

'hello world'

Tip: Assigning a value to a variable when it has not been referenced before will also

instantiate it. You do not need to define the variable first.

Creating an array and a dictionary and printing values

1. Define a small array:

>>> phonelist = [938477566, 938377264,947662781]

2. Print out the contents of the array:

>>> print phonelist

[938477566, 938377264, 947662781]

3. Print out the value of one of the records in the array:

>>> print phonelist[0]

938477566

4. Define a small dictionary:

>>> phonebook = {"John" : 938477566, "Jack" : 938377264, "Jill" : 947662781}

5. Print out the contents of the dictionary:

>>> print phonebook

{'Jill': 947662781, 'John': 938477566, 'Jack': 938377264}

6. Print out the value of one of the records in the dictionary:

>>> print phonebook["John"]

938477566

Looping through a predefined list

1. Define a list containing numbers:

>>> primes = [2, 3, 5, 7]

2. Specify a loop to iterate over the list and display each member:

>>> for prime in primes:

 print prime

2

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 5

3

5

7

Note: Line indentation is very important. It specifies which statements are part of a block.

In the example above, the print statement must be indented to be part of the for loop block.

And if you want to include further statements in the loop block, they need to be given the

exact same level of indentation. Without the correct level of indentation, statements will

not be included in blocks in your code.

Looping using the xrange function

 Use iteration to print out the numbers 0 to 4:

>>> for x in xrange(5):

 print x

0

1

2

3

4

Tip: You can substitute the range statement for the xrange statement. However, xrange

will normally be more efficient than range, especially if you are iterating over a large range

of numbers.

July 7, 2017 Version 2.0.0.0 7

In This Chapter

Introduction ... 8

Building a simple Python example in NWare ... 9

Changing Python code while a project is running .. 11

Debugging Python scripts ... 11

An example with multiple input devices ... 12

Building an example that processes both inputs and outputs 13

Chapte r 2

Getting started with Python in
NWare

Chapter 2 - Getting started with Python in NWare

8 Version 2.0.0.0 July 7, 2017

.

Introduction

In MediaMatrix, Python can be used to add programmable logic to an NWare project. The

logic can be triggered manually – by clicking a button, for example – or automatically,as soon

as a project is deployed or emulated.

MediaMatrix supports Python version 2.4. Scripts can be run on NIONs, nControls and

nTouch 180s. They can also be run in NWare in emulation mode, when you are developing

and testing your project. The examples in this section will use NIONs, but you use one of the

other devices if you prefer.

Python script is written and linked to the control flow of a project using Live Python blocks or

Python Scripting blocks.

The NWare Live Python block

Live Python blocks allow scripts to be edited and updated at any time, even when a project is

running. You can also use them to copy and paste scripts between projects, making them very

flexible. We recommend that you use Live Python blocks in favor of Python Scripting blocks.

The Live Python block can be configured with a set number of inputs and outputs, allowing

you to wire it to other devices in your design.

The inputs and outputs on the block can be referenced from Python code. You can work with

values from other devices in the design via the inputs, and assign values to other devices using

both the inputs and the outputs.

In Python code, the inputs and outputs are referenced using the arrays inputs[] and outputs[].

For example, the statement below will retrieve the value received via the first input on the

block, and assign it to the variable x.

x = inputs[0].value_get()

When you open the block, it displays an icon for opening the code editor, and two fields

for displaying status messages and error messages. You can wire these fields to other devices

in your project to perform different operations when their values change.

Note: Before you can type in or paste in script to the device, you must emulate or deploy the

project.

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 9

Tip: To use a different editor program, on the Tools menu, click User Preferences. Then,

under External String Editor, click Browse to choose a new program. You can specify any

editor program you want to use, but we recommend that it is language aware. This will make

it easier to read the code that you write, and minimize the number of errors.

As soon as the project is emulated or deployed, you can double-click the edit icon to

update the Python script for the block.

By default, the Python script is run when the value received on one of the inputs changes, but

you can customize the behavior to suit your project. For more information, see Controlling the

execution of Python code (on page 18).

If there is an error in the Python script, an error message will be displayed in the Error box on

the control surface. For more information see Debugging Python scripts (on page 11).

PySNMP support

Python provides native support for SNMP, using a technology called PySNMP.

Note: PySNMP is supported on nControl and nTouch 180 units only.

For more information on PySNMP, see http://pysnmp.sourceforge.net/

(http://pysnmp.sourceforge.net/).

Building a simple Python example in NWare

In this example, we are going to wire a knob control to a Live Python block. The Python code

will display a message when the value of the knob reaches 1.

 To add the devices and wire them together

1. Add a NION to your project.

2. Expand the device tree to display Control / Knobs, Faders Etc. / Generic Controls.

3. Drag a Generic Controls device over to the design page.

4. Click OK to create a single knob control.

5. Open the Controls block, and copy the knob control to the design page.

http://pysnmp.sourceforge.net/

Chapter 2 - Getting started with Python in NWare

10 Version 2.0.0.0 July 7, 2017

6. Click the knob control to select it, and then press SHIFT+CTRL+M to add a master wiring

node.

7. Expand the device tree to display Control / Live Python.

8. Drag the Live Python folder over to the design page, and then click 1 input - 0 output.

9. On the toolbar, click the Wire Mode button to switch to wiring mode.

10. Drag the master wiring node on the knob control over to the input wiring node on the Live

Python block to wire the devices together.

 To add the Python code and test out the project

1. Emulate the project.

2. Double-click the Live Python block to open it.

3. Double-click the Edit button to open the Python source code editor.

4. Type the code below into the editor and then save the file.

message.string_set("")

if (inputs[0].value_get() == 1):

 message.string_set("Knob value set to 1")

The code looks at the value received via the input on the Live Python block. If it is equal to

1, a message is displayed in the Message field on the control surface of the device.

5. Gesture the knob and watch the control surface on the Live Python device.

While the value stays at 1, the message is displayed. However, if the value of the knob

reduces, the message will be hidden.

The link between the devices allows Python code in the Live Python block to monitor the

value of the knob control as it is gestured by the user.

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 11

.

Changing Python code while a project is running

One of the benefits of using the Live Python block is that you can make changes to Python

code while the project is running, without the need to recompile or redeploy.

Notes:

 When you save the Python script in the editor, changes you have made will take effect

immediately. You must be sure the code will function correctly before you save.

 Saving the code in the editor does not save the code permanently in the project file. When

you stop emulating or disconnect from a deployed project, the default settings must be

saved, otherwise the changes to the Python code will be lost. If you are prompted to save

the settings, select Yes. If you are not prompted, the settings will be saved automatically.

The behavior is controlled by the save default settings options on the Advanced tab of the

User Preferences dialog box.

 Python Scripting blocks do not support live code updates. This feature is only available for

Live Python blocks.

 To change Python code while a project is running

1. Double-click the Live Python block to open it.

2. Double-click the Edit button to open the Python source code editor.

3. Edit the code in the editor window, and then save the file.

Debugging Python scripts

The Live Python device does not include a debugger, but will display an error message when

the code generates errors. In the example below, the typo on line 2 has produced a NameError.

Chapter 2 - Getting started with Python in NWare

12 Version 2.0.0.0 July 7, 2017

We recommend that you develop Python code using a development tool that includes a

debugger, such as Idle (http://docs.python.org/library/idle.html). Once the code is close to

completion, you can paste it into a Live Python device, where you will then be able to test it

out with MediaMatrix devices.

An example with multiple input devices

In this example, we will see see how to work with the values of multiple controls wired to the

inputs on the Live Python block.

By default, a Live Python block is configured to monitor all the inputs, and run the Python

code inside the block as soon as an input value changes. This is the behavior that we want for

this example, so we will leave the property (watch input) set to any on the device properties.

 To set up a Live Python block with multiple input devices

1. Add a NION to your project.

1. Expand the device tree to display Control / Knobs, Faders Etc. / Generic Controls.

2. Drag a Generic Controls device over to the design page.

3. On the Controls Properties dialogs box, in the Number of controls box, click 3.

4. Click OK.

5. Open the Controls block, and copy the knob controls to the design page.

6. Drag a selection box around the knob controls, and then press SHIFT+CTRL+M to add

master wiring nodes.

7. Drag the Live Python folder over to the design page, and then click 3 input - 0 output.

8. On the toolbar, click the Wire Mode button to switch to wiring mode.

9. Wire all three knob controls to the inputs of the Live Python block.

10. Emulate the project.

11. Double-click the Edit button to open the Python source code editor.

12. Type the following Python code in the editor:

total=0

average=0

http://docs.python.org/library/idle.html

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 13

for x in range(len(inputs)):

 total += inputs[x].value_get()

average=round(total/len(inputs),3)

message.string_set("The average of the input values is " + str(average))

13. Save the Python code.

14. Gesture the knobs.

The message on the control surface of the Live Python block will show the average of the

knob values.

Building an example that processes both inputs and
outputs

In this example, we will see how to check whether input values have changed, and then set

output values accordingly.

 To build an example that processes both inputs and outputs

1. Add a NION to the design page.

2. Add a Live Python block to the design page with 2 inputs and 8 outputs.

Chapter 2 - Getting started with Python in NWare

14 Version 2.0.0.0 July 7, 2017

3. Add two buttons to the design page, then wire them to the inputs on the Live Python block.

4. Add 8 text box generic controls to the design page, then wire them to the outputs on the

Live Python block.

5. Emulate the project.

6. Double-click the Edit button to open the Python source code editor.

7. Type the following Python code in the editor:

colors = ['red','green', 'blue','pink','orange','gray','purple','magenta']

if inputs[0].changed_get():

 for i in range(len(outputs)):

 outputs[i].string_set(colors[i])

else:

 for i in range(len(outputs)):

 outputs[i].string_set(" ")

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 15

8. Click the first button to see the colors from the array displayed in the yellow text boxes.

9. Click the second button to clear the values in the text boxes.

Using alternative Python statements in the example

Different Python statements can be substituted for the ones used in the previous example.

Experimenting in this way can help you to get used to using different approaches when

structuring your Python code.

For example, the for loops could be swapped for while loops.

Original code with for loops

colors = ['red','green',

'blue','pink','orange','gray','purple','magenta']

if inputs[0].changed_get():

 for i in range(len(outputs)):

 outputs[i].string_set(colors[i])

else:

 for i in range(len(outputs)):

 outputs[i].string_set(" ")

Replacement code with while loops

colors = ['red','green',

'blue','pink','orange','gray','purple','magenta']

if inputs[0].changed_get():

 i = 0

 while i < len(outputs):

 outputs[i].string_set(colors[i])

 i = i + 1

else:

 i= 0

Chapter 2 - Getting started with Python in NWare

16 Version 2.0.0.0 July 7, 2017

 while i < len(outputs):

 outputs[i].string_set(" ")

 i = i + 1

How different button types affect code execution

When you use buttons wired to the Live Python block, it is important to understand how the

different button operating modes (toggle/momentary/string) affect the triggering of the Python

script.

A toggle button will execute the Python code once when clicked. However, the state of a

momentary button will change twice when it is clicked (from on and then back to off). This

means the Python code inside the wired block will be executed twice. You can test out this

behavior using an example that displays the value of the state variable, when a button wired to

the Live Python block is clicked:

if inputs[0].changed_get():

 state+=1

 message.string_set("This code has been executed " + str(state) +

" times")

Clicking a momentary button will display a message showing the Python code has been

executed twice.

If you want to use a momentary button, and ensure that the function is only called once, you

need to add an extra if statement to the code:

if inputs[0].changed_get():

 if inputs[0].value_get()==1:

 state+=1

 message.string_set("This code has been executed " + str(state)

+ " times")

July 7, 2017 Version 2.0.0.0 17

In This Chapter

Controlling the execution of Python code ... 18

Using the state variable to store a value persistently .. 19

Storing and reusing values from Python code .. 21

Using threading to run scripts autonomously ... 24

Chapte r 3

Using more advanced features

Chapter 3 - Using more advanced features

18 Version 2.0.0.0 July 7, 2017

.

Controlling the execution of Python code

By default, Python code inside a Live Python block runs from start to finish whenever a value

is received via one of the inputs on the block. The value could be from a button that has been

clicked, or from a knob control that the user has gestured, for example. You can configure the

block to monitor all of the inputs (several may be wired to different devices) or just the first or

last input.

Note: User-defined Python variables do not retain the values assigned to them from the last

time the code was executed. Only the built-in state variable does this. For more information,

see Using the persistent state variable (on page 19).

Another way to run Python code is automatically using a thread. Threaded code will run as

soon as the project has been deployed or emulated, it does not wait for a value to be received

on one of the inputs. For more information, see Using threading to run scripts automatically

(on page 24). The remainder of this section assumes you want to control execution of the script

using the inputs on the Live Python block.

 To specify when to execute the Python code

1. Right-click on the Live Python block, and then click Properties.

2. In the watch input list, click an option to specify which input value must change in order

to trigger the execution of the Python code.

any A change to the value of any input will trigger the execution of

the code.

first Only a change to the value of the first input will trigger the

execution of the code.

last Only a change to the value of the last input will trigger the

execution of the code.

3. Click OK.

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 19

Using the state variable to store a value persistently

Each Live Python block has a built in variable called state, which is initialized to zero when

the project is first emulated or deployed, but retains its value while the project is running.

Unlike variables initialized inside the Live Python block, the value of state will be retained

even when the input values change, and the Python code is executed repeatedly.

The example in this section will show how the value of state can be incremented by successive

calls to the Python code. The calls are initiated by a button wired to an input on the Live

Python block. Each time the button is clicked, the Python code will run. The changing value of

state is displayed on the control surface of the Live Python block.

Tip: If you need to save more variable values than just that of the state variable, you can store

the values using generic controls. For more information, see Storing and reusing values from

Python code (on page 21).

 To use the persistent state variable

1. Add a NION to your project.

2. Expand the device tree to display Control / Knobs, Faders Etc. / Generic Controls.

3. Drag a Generic Controls device over to the design page.

4. In the Type of control(s) list, click boolean.

5. Click OK.

6. Double-click the control block to open it, then copy the button control out to the design

page.

7. Click the button to select it, and then press SHIFT+CTRL+M to add a master wiring node.

8. Expand the device tree to display Control / Live Python.

9. Drag the Live Python folder over to the design page, and then click 1 input - 0 output.

10. On the toolbar, click the Wire Mode button to switch to wiring mode.

Chapter 3 - Using more advanced features

20 Version 2.0.0.0 July 7, 2017

11. Drag the master wiring node on the button over to the input wiring node on the Live

Python block to wire the devices together.

 To add the Python code and test out the project

1. Emulate the project.

2. Double-click the Live Python block to open it.

3. Double-click the Edit button to open the Python source code editor.

4. Type the code below into the editor and then save the file.

message.string_set("this function has been called " + str(state) + " times"

)

state = state + 1

Each time you click the button, the message on the control surface of the Python block will

be updated.

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 21

.

Storing and reusing values from Python code

The state variable can store and retain a single value while the project is running, but if you

want to store multiple values persistently, you will need to pass them from the Python code

inside the Live Python block to generic controls. The values can then be passed back to the

Python code when they are needed.

Notes:

 We recommend using a string control to store values, as shown in the example below. If

you use a different type of control, such as a float, the values you expect to be passed to the

control must be within the range specified on the device properties of the control.

 If you use a string control to store numeric values, you will need to convert the values back

to the numeric format before you can use them in calculations, or assign them to numeric

variables.

 To store and reuse values from Python code

1. Add a NION to the design page.

2. Add a Live Python block to the design page with six inputs.

3. Add four buttons to the design page, then wire them to the first four inputs on the Live

Python block.

4. Label the buttons as follows:

 Save value 1

 Save value 2

 Show final total

 Reset

5. Add two string controls (Value 1 and Value 2) to the design page, then add both master and

slave wiring nodes to them.

6. Wire both the master and slave nodes on the first string control to the fifth input wiring

node on the Live Python block.

Chapter 3 - Using more advanced features

22 Version 2.0.0.0 July 7, 2017

7. Wire both the master and slave nodes on the second string control to the last input wiring

node on the Live Python block.

8. Emulate the project.

9. Double-click the Live Python block to open it.

10. Double-click the Edit button to open the Python source code editor.

11. Type the code below into the editor and then save the file.

total=0

Save value 1 button as a string

if inputs[0].changed_get():

 inputs[4].string_set("25")

Save value 2 button as a string

if inputs[1].changed_get():

 inputs[5].string_set("50")

Show add integer values of saved strings and display

if inputs[2].changed_get():

 total = int(inputs[4].string_get()) + int(inputs[5].string_get())

 message.string_set(total)

Reset displayed values

if inputs[3].changed_get():

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 23

 inputs[4].string_set("")

 inputs[5].string_set("")

 message.string_set("")

12. Click the Save value 1 button.

13. The value 25 is saved in the first string control.

14. Click the Save value 2 button.

The value 50 is saved in the second string control.

15. Click the Show final total button.

The final value 75 is calculated using the saved values, then it is displayed on the control

surface of the Live Python block.

If you want to run the sequence again, click the Reset button, and refer to step 12.

Chapter 3 - Using more advanced features

24 Version 2.0.0.0 July 7, 2017

Using threading to run scripts autonomously

Threading allows your Python code to run autonomously in the background, without requiring

an input state change to run it. Code inside a thread will run independently of all other Python

code in the project – this includes code inside the same Live Python block, or inside other Live

Python blocks.

Threaded Python scripts are not triggered by values received on the inputs of the Live Python

device. They start running automatically, as soon as the NWare project is deployed.

Example applications for threaded scripts include:

 Automatic muting of the audio outputs until the power up sequence has completed (on

page 25).

 Watching multiple controls independently, and performing different actions depending on

the values.

Notes:

 Threading is an advanced feature that must be used carefully. If not structured

correctly, threaded code can consume all the available resources on the node hosting

the project, and prevent the project from running.

 Threading must be enabled on the Device Properties of the Live Python block. It is not

supported by default.

Syntax and structure of a threaded script

A threaded script can use the following basic structure:

while(1):

 # do something here

 # wait for a short time and then start the loop again

 event.wait(400)

The script performs some actions, and then waits for a short time (400 milliseconds) before

returning to the start of the loop. If the user redeploys the project, shuts down the node hosting

the project, or changes the script via the Live Python device, it is during the 400ms time period

that execution of the script pauses, and other processes running on the node can perform

checks to see whether to halt the script altogether. If there is no reason to halt the script, the

loop will continue running indefinitely.

Important Note: The event.wait statement relinquishes control to other processes to allow

them to run. Without this statement, the Python code would consume all available CPU

resources, until the node hosting the project stopped functioning correctly. At this point, the

role would need to be stopped and then erased via the web interface (or front panel).

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 25

.

Example threaded script - counter

This example threaded script will display a message on the control surface of the Live Python

block that updates every second.

while (1):

 message.string_set("Counter: "+str(state))

 state = state +1

 event.wait(1000)

The counter will start as soon as the project is emulated or deployed, it does not require any

values to be received on the inputs.

Note: Threading must be enabled on the Device Properties of the Live Python block. It is not

supported by default. If it is not enabled, when the project is run, the message RuntimeError :

exit thread... will be displayed in the Message field.

Example threaded script - power up mute delay

This example uses a Live Python threaded script to mute the audio outputs of a NION as soon

as the project starts running. The unit is then kept muted until a set time has elapsed, allowing

other devices in the system, like amps, for example, to finish their own boot up sequence,

which could take longer.

Using a Live Python block allows the code to run immediately – as soon as the NION powers

up – and mute the outputs before performing any other functions, and without user interaction.

The project contains a NioNode block with the controls on the Mute tab copied out to the

design page. The Unit mute (for the individual NION) is wired to a control block, which will

control when the NION is muted.

Note: The unit mute is used, rather than the system mute. This is because different NIONs in a

project may take different lengths of time to start up. Attempting to mute all the NIONs in the

project at the same time using the system mute may result in only some of the units being

muted.

Chapter 3 - Using more advanced features

26 Version 2.0.0.0 July 7, 2017

Inside the Power Up Mute Delay block, a control with a delay value (8000 milliseconds) is

wired to the input on the Live Python block. This is the length of time the control output on the

Live Python block will remain set to 1 (muting the NION) before being set to 0 (unmuting the

NION).

The Live Python code sets the output on the block to 1 to action the mute immediately. It then

waits for the length of time specified by the wired input control. Finally, it sets the output on

the block to 0 to switch off the mute.

outputs[0].value_set(1)

event.wait(inputs[0].value_get())

outputs[0].value_set(0)

Note: Most threaded scripts are configured to run continuously in the background, using a

loop and the event.wait() statement. This example, however, is designed to run only once, at

start up.

July 7, 2017 Version 2.0.0.0 27

In This Chapter

Predefined Variables ... 28

Input and output control functions .. 28

Threaded script functions .. 29

Serial port control functions .. 31

Support for Python modules ... 32

Chapte r 4

Python reference

Chapter 4 - Python reference

28 Version 2.0.0.0 July 7, 2017

.

Predefined Variables

Predefined variables

inputs Object referencing all the controls wired to the inputs of the

Python device.

For example, inputs[0] returns a reference to the control

wired to the first input node, inputs[1] returns a reference to

the control wired to the second input node, and so on.

outputs Object referencing all the controls wired to the outputs of the

Python device.

For example, outputs[0] returns a reference to the control

wired to the first output node, outputs[1] returns a reference

to the control wired to the second output node, and so on.

message Text control displayed on the control surface of the Python

block. Its value can be set using message.string_set(value).

state A persistent integer variable. The default value is 0 (zero).

For an example showing how you can work with the value of

the state variable, see Using the persistent state variable (on

page 19).

Input and output control functions

Input controls (wired to the inputs of the Python or Live Python block)

position_get() Returns the position of a control in floating point format.

position_set() Sets the position of a control using a floating point format

value.

value_get() Returns the numeric value of a control.

value_set (value) Sets the numeric value of a control.

string_get() Returns the value of a control as a string.

string_set (value) Sets the value of a control in string format.

changed_get() Returns true if the input control has changed since the last time

the script function was run.

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 29

Output controls (wired to the outputs of the Python or Live Python block)

position_set (value) Sets the position of a control. The value must be a floating point

or integer.

value_set (value) Sets the value of a control. The value must be a floating point or

integer.

string_set (value) Sets the value of a control in string format. The value must be a

string.

Threaded script functions

event.wait(timeout)

Pause the script for a specified period of time before continuing.

Note: It is not possible to pause the script indefinitely.

timeout Time in milliseconds for the routine to wait before continuing.

If a project role is stopped while waiting in this routine, the

script will exit immediately at this line and no further

processing will occur.

This argument is required.

If you specify zero, the script will continue immediately.

event.wait_input_change ([timeout])

Pause the script until one of the inputs of a device changes (or a specified period of time

elapses).

Returns true if an input has changed, or false if no input has changed.

[timeout] Time in milliseconds for the routine to wait before continuing.

If a project role is stopped while waiting in this routine, the

script will exit immediately at this line and no further

processing will occur.

This argument is optional.

Note: If this argument is omitted, the routine will wait

indefinitely for an input to change.

Chapter 4 - Python reference

30 Version 2.0.0.0 July 7, 2017

To determine if any inputs have changed after the script returns from running

wait_input_change([timeout]), query the input objects to obtain their current state. For

example:

for input in inputs:

 if input.change_get():

 #do something

event.wait_input_should_exit([timeout])

Pause the script until one of the inputs of a device changes (or a specified period of time

elapses).

[timeout] Time in milliseconds for the routine to wait before continuing.

If a project role is stopped while waiting in this routine, a

non-zero value will be returned to allow the script to perform

any cleanup that might be required before exiting.

If zero is specified, the script will continue immediately.

This argument is optional.

Note: If this argument is omitted, the routine will wait

indefinitely for an input to change.

event.wait_should_exit(timeout)

Pause the script for a specified period of time before continuing.

timeout Time in milliseconds for the routine to wait before continuing.

If a project role is stopped while waiting in this routine, a

non-zero value will be returned to allow the script to perform

any cleanup that might be required before exiting.

If zero is specified, the script will continue immediately.

This argument is optional.

Note: If this argument is omitted, the routine will wait

indefinitely for an input to change.

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 31

Serial port control functions

serial_port.create

Opens communication to a serial port on the device.

By default, the Duplex argument is set to zero, which means the RS-422 protocol will be used.

If you want to use RS-485, set the Duplex argument to 1.

Name The name of the port.

Data type: string.

On nControl units, the format is COM<number>. For example:

COM1.

On NIONs, this is the path to the port. For example:

/dev/ttyS1.

This argument is required.

Baud rate Baud rate for data transmission and reception in bits per second.

Data type: Integer.

This argument is required.

Data bits Data type: Integer.

Default is 8.

Parity Data type: String.

Default is none.

none No parity bit is sent. Error detection is handled by

the communication protocol.

even The parity bit is set to 1 if the number of ones in the

set of bits is odd, therefore making the number of

ones even.

odd The parity bit is set to 1 if the number of ones in the

set of bits is even, therefore making the number of

ones odd.

mark Parity bit is always set to the mark signal condition

(logical 1).

space Parity bit is always set to the space signal

condition.

Stop bits Bits sent at the end of every character to signify the end of the

Chapter 4 - Python reference

32 Version 2.0.0.0 July 7, 2017

character in the data transmission. Normally, 1 stop bit is used.

Data type: Float.

Can be set to 1, 1.5, 2. Default is 1.

Duplex Integer. Default is 0.

0 Full duplex.

1 Half duplex.

Support for Python modules

Python scripting is supported by NION, nControl and nTouch 180. It is also supported by

NWare in emulation mode. However, these different platforms do not all support the same set

of Python modules. It is important to check the sections below to make sure the modules you

are intending to use in your project are available for the platforms you are using and whether

they are built-in or need to be included manually with an import statement (indicated by the

term module).

Modules (underscore _)

Module name Emulation NION nControl nTouch 180

__built in__ Built-in Built-in Built-in Built-in

__future__ Module N/A Module Module

__phello__.foo N/A N/A N/A N/A

_bisect Built-in N/A Built-in Built-in

_bsddb N/A N/A N/A Built-in

_codecs Built-in Built-in Built-in Built-in

_codecs_cn Built-in N/A Built-in Built-in

_codecs_hk Built-in N/A Built-in Built-in

_codecs_iso2022 Built-in N/A Built-in Built-in

_codecs_jp Built-in N/A Built-in Built-in

_codecs_kr Built-in N/A Built-in Built-in

_codecs_tw Built-in N/A Built-in Built-in

_csv Built-in N/A Built-in Built-in

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 33

Module name Emulation NION nControl nTouch 180

_curses N/A N/A N/A N/A

_curses_panel Built-in N/A N/A N/A

_heapq Built-in N/A Built-in Built-in

_hotshot Built-in N/A Built-in Built-in

_locale Built-in N/A Built-in Built-in

_LWPCookieJar Module N/A Module Module

_MozillaCookieJar Module N/A Module Module

_multibytecodec Built-in N/A Built-in Built-in

_mysql N/A Module N/A N/A

_mysql_exceptions N/A Module N/A N/A

_random Built-in Module Built-in Built-in

_socket Module Module Module Module

_sre Built-in Built-in Built-in Built-in

_ssl N/A N/A N/A Built-in

_strptime Module N/A Module Module

_symtable Built-in Built-in Built-in Built-in

_testcapi N/A N/A N/A N/A

_threading_local Module N/A Module Module

_weakref Built-in N/A Built-in Built-in

Chapter 4 - Python reference

34 Version 2.0.0.0 July 7, 2017

.

Modules (a-d)

Module name Emulation NION nControl nTouch 180

aifc Module N/A Module Module

anydbm Module N/A Module Module

array Built-in N/A Built-in Built-in

asynchat Module N/A Module Module

asyncore Module N/A Module Module

atexit Module N/A Module Module

audiodev Module N/A Module Module

audioop Built-in N/A Built-in Built-in

base64 Module Module Module Module

BaseHTTPServer Module N/A Module Module

Bastion Module N/A Module Module

bdb Module N/A Module Module

binascii Built-in Module Built-in Built-in

binhex Module N/A Module Module

Bio N/A Module N/A N/A

BioSQL N/A Module N/A N/A

bisect Module N/A Module Module

bsddb N/A N/A N/A N/A

bz2 N/A Module N/A N/A

calendar Module N/A Module Module

Canvas N/A N/A N/A N/A

CDROM N/A N/A N/A N/A

CGIHTTPServer Module N/A Module Module

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 35

Module name Emulation NION nControl nTouch 180

cgitb Module N/A Module Module

chunk Module N/A Module Module

cmath Built-in Module Built-in Built-in

cmd Module N/A Module Module

code Module N/A Module Module

codecs Module Module Module Module

codeop Module N/A Module Module

collections Built-in N/A Built-in Built-in

colorsys Module N/A Module Module

commands Module N/A Module Module

CompatMysqldb N/A Module N/A N/A

compileall Module N/A Module Module

compiler Module N/A Module Module

ConfigParser Module N/A Module Module

Cookie Module N/A Module Module

cookielib Module N/A Module Module

copy Module N/A Module Module

copy_reg Module Module Module Module

cPickle Built-in Module Built-in Built-in

crypt N/A Module N/A N/A

cStringIO Built-in N/A Built-in Built-in

csv Module N/A Module Module

curses N/A N/A Module N/A

datetime Built-in Module Built-in Built-in

dbhash N/A N/A Module N/A

Chapter 4 - Python reference

36 Version 2.0.0.0 July 7, 2017

Module name Emulation NION nControl nTouch 180

dbm N/A N/A N/A N/A

decimal Module N/A Module Module

Dialog N/A N/A N/A N/A

difflib Module N/A Module Module

dircache Module N/A Module Module

dis Module N/A Module Module

distutils N/A N/A N/A N/A

dl N/A N/A N/A N/A

DLFCN N/A N/A N/A N/A

doctest Module N/A Module Module

DocXMLRPCServer Module N/A Module Module

dumbdbm Module N/A Module Module

dummy_thread Module N/A Module Module

dummy_threading Module N/A Module Module

Modules (e-h)

Module name Emulation NION nControl nTouch 180

email Module Module Module Module

encodings Module N/A Module Module

errno Built-in Built-in Built-in Built-in

exceptions Built-in Built-in Built-in Built-in

fcntl N/A N/A N/A N/A

filecmp Module N/A Module Module

FileDialog N/A N/A N/A N/A

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 37

Module name Emulation NION nControl nTouch 180

fileinput Module N/A Module Module

FixTk N/A N/A N/A N/A

fnmatch Module N/A Module Module

formatter Module N/A Module Module

fpformat Module N/A Module Module

ftplib Module N/A Module Module

gc Built-in Built-in Built-in Built-in

gdbm N/A N/A N/A N/A

getopt Module N/A Module Module

getpass Module N/A Module Module

gettext Module N/A Module Module

glob Module N/A Module Module

gopherlib Module N/A Module Module

grp N/A N/A N/A N/A

gzip N/A N/A N/A N/A

heapq Module N/A Module Module

hmac Module Module Module Module

hotshot Module N/A Module Module

htmlentitydefs Module N/A Module Module

htmllib Module N/A Module Module

HTMLParser Module N/A Module Module

httplib Module N/A Module Module

Chapter 4 - Python reference

38 Version 2.0.0.0 July 7, 2017

Modules (i-n)

Module name Emulation NION nControl nTouch 180

idlelib N/A N/A N/A N/A

ihooks Module N/A Module Module

imageop Built-in N/A Built-in Built-in

imaplib Module N/A Module Module

imghdr Module N/A Module Module

Imp Built-in Built-in Built-in Built-in

imputil Module N/A Module Module

IN N/A N/A N/A N/A

inspect Module N/A Module Module

itertools Built-in N/A Built-in Built-in

keyword Module N/A Module Module

linecache Module Module Module Module

linuxaudiodev N/A N/A N/A N/A

locale Module Module Module Module

logging Module N/A Module Module

macpath Module N/A Module Module

macurl2path Module N/A Module Module

mailbox Module N/A Module Module

mailcap Module N/A Module Module

markupbase Module N/A Module Module

marshal Built-in Built-in Built-in Built-in

Martel N/A Module N/A N/A

math Built-in Module Built-in Built-in

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 39

Module name Emulation NION nControl nTouch 180

md5 Built-in Module Built-in Built-in

mhlib Module N/A Module Module

mimetools Module N/A Module Module

mimetypes Module N/A Module Module

MimeWriter Module N/A Module Module

mmap Built-in N/A Built-in Built-in

modulefinder Module N/A Module Module

multifile Module N/A Module Module

mutex Module N/A Module Module

mx N/A Module N/A N/A

MySQLdb N/A Module N/A N/A

netrc Module N/A Module Module

new Module N/A Module Module

nis N/A N/A N/A N/A

nntplib Module N/A Module Module

ntpath Module Module Module Module

nturl2path Module N/A Module Module

Modules (o-r)

Module name Emulation NION nControl nTouch 180

opcode Module N/A Module Module

operator Built-in N/A Built-in Built-in

optparse Module N/A Module Module

os Module Module Module Module

Chapter 4 - Python reference

40 Version 2.0.0.0 July 7, 2017

Module name Emulation NION nControl nTouch 180

os2emxpath Module N/A Module Module

ossaudiodev N/A N/A N/A N/A

parserpwd N/A N/A N/A N/A

pdb Module N/A Module Module

pickle Module N/A Module Module

pickletools Module N/A Module Module

pipespkgutil N/A N/A N/A N/A

platform Module N/A Module Module

popen2 Module N/A Module Module

poplib Module N/A Module Module

posix N/A Built-in N/A N/A

posixfile Module N/A Module Module

posixpath Module Module Module Module

pprint Module N/A Module Module

profile Module N/A Module Module

pstats Module N/A Module Module

pty N/A N/A N/A N/A

py_compile Module N/A Module Module

pyclbr Module N/A Module Module

pydoc Module N/A Module Module

pyexpat Module Module Module Module

Queue Module N/A Module Module

quopri Module Module Module Module

random Module Module Module Module

re Module Module Module Module

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 41

Module name Emulation NION nControl nTouch 180

readline N/A N/A N/A N/A

reconvert Module N/A Module Module

regex Built-in Module Built-in Built-in

regex_syntax Module N/A Module Module

regsub Module N/A Module Module

repr Module N/A Module Module

resource N/A N/A N/A N/A

rexec Module N/A Module Module

rfc822 Module Module Module Module

rgbimg Module N/A Built-in Built-in

rlcompleter N/A N/A N/A N/A

robotparser Module N/A Module Module

Modules (s-t)

Module name Emulation NION nControl nTouch 180

sched Module N/A Module Module

ScrolledText N/A N/A N/A N/A

select Module Module Module Module

sets Module N/A Module Module

sgmllib Module N/A Module Module

sha Built-in Module Built-in Built-in

shelve N/A N/A N/A N/A

shlex Module N/A Module Module

shutil Module N/A Module Module

Chapter 4 - Python reference

42 Version 2.0.0.0 July 7, 2017

Module name Emulation NION nControl nTouch 180

signal Built-in Built-in Built-in Built-in

SimpleDialog N/A N/A N/A N/A

SimpleHTTPServer Module N/A Module Module

SimpleXMLRPCServ

er

Module N/A Module Module

site Module Module Module Module

smtplib Module N/A Module Module

sndhdr Module N/A Module Module

socket Module Module Module Module

SocketServer Module N/A Module Module

sre Module Module Module Module

sre_compile Module Module Module Module

sre_constants Module Module Module Module

sre_parse Module Module Module Module

stat Module Module Module Module

statcache Module N/A Module Module

statvfs Module N/A Module Module

string Module Module Module Module

StringIO Module N/A Module Module

stringold Module N/A Module Module

stringprep Module N/A Module Module

strop Built-in N/A Built-in Built-in

struct Built-in Module Built-in Built-in

subprocess Module N/A Module Module

sunau N/A N/A N/A N/A

sunaudiosymbol N/A N/A N/A N/A

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 43

Module name Emulation NION nControl nTouch 180

symtable Module N/A Module Module

sys Built-in Built-in Built-in Built-in

syslog N/A N/A N/A N/A

tabnanny Module N/A Module Module

tarfile Module N/A Module Module

telnetlib Module Module Module Module

tempfile Module N/A Module Module

termios N/A N/A N/A N/A

test N/A N/A N/A N/A

textwrap Module N/A Module Module

this Module N/A Module Module

thread Built-in Built-in Built-in Built-in

threading Module N/A Module Module

time Built-in Module Built-in Built-in

timeit Module N/A Module Module

timing N/A N/A N/A N/A

Tix N/A N/A N/A N/A

tkColorChooser N/A N/A N/A N/A

tkCommonDialog N/A N/A N/A N/A

Tkconstants N/A N/A N/A N/A

Tkdnd N/A N/A N/A N/A

tkFileDialog N/A N/A N/A N/A

tkFont N/A N/A N/A N/A

Tkinter N/A N/A N/A N/A

tkMessageBox N/A N/A N/A N/A

Chapter 4 - Python reference

44 Version 2.0.0.0 July 7, 2017

Module name Emulation NION nControl nTouch 180

tkSimpleDialog N/A N/A N/A N/A

toaiff Module N/A Module Module

token Module N/A Module Module

tokenize Module N/A Module Module

trace Module N/A Module Module

traceback Module N/A Module Module

tty N/A N/A N/A N/A

turtle N/A N/A N/A N/A

types Module Module Module Module

TYPES N/A N/A N/A N/A

Modules (u-z)

Module name Emulation NION nControl nTouch 180

unicodedata Module N/A Module Module

unittest Module N/A Module Module

urllib Module N/A Module Module

urllib2 Module N/A Module Module

urlparse Module N/A Module Module

user Module N/A Module Module

UserDict Module Module Module Module

UserList Module N/A Module Module

UserString Module N/A Module Module

uu Module N/A Module Module

warnings Module Module Module Module

Python Developer's Guide

July 7, 2017 Version 2.0.0.0 45

Module name Emulation NION nControl nTouch 180

wave Module N/A Module Module

weakref Module N/A Module Module

webbrowser Module N/A Module Module

whichdb Module N/A Module Module

whrandom Module Module Module Module

xdrlib Module N/A Module Module

xml Module N/A Module Module

xmllib Module N/A Module Module

xmlrpclib Module N/A Module Module

xxsubtype Built-in Built-in Built-in Built-in

zipfile N/A N/A N/A N/A

zipimport Built-in Built-in Built-in Built-in

zlib Built-in Module N/A N/A

MediaMatrix®
A Division of Peavey Electronics Corp.

5022 Hartley Peavey Drive, Meridian Mississippi, 39305, USA

Phone: 866.662.8750

http://www.peaveycommercialaudio.com/products.cfm/mm/

Features & Specifications subject to change without notice

Copyright © 2016, All Rights Reserved

80307550

	Cover page
	Contents
	Introduction
	What is Python?
	Installing Python on your PC
	Basic Python examples
	Starting the Python shell
	Printing hello world
	Using basic variables
	Creating an array and a dictionary and printing values
	Looping through a predefined list
	Looping using the xrange function

	Getting started with Python in NWare
	Introduction
	The NWare Live Python block
	PySNMP support

	Building a simple Python example in NWare
	Changing Python code while a project is running
	Debugging Python scripts
	An example with multiple input devices
	Building an example that processes both inputs and outputs
	Using alternative Python statements in the example
	Original code with for loops
	Replacement code with while loops

	How different button types affect code execution

	Using more advanced features
	Controlling the execution of Python code
	Using the state variable to store a value persistently
	Storing and reusing values from Python code
	Using threading to run scripts autonomously
	Syntax and structure of a threaded script
	Example threaded script - counter
	Example threaded script - power up mute delay

	Python reference
	Predefined Variables
	Input and output control functions
	Threaded script functions
	event.wait(timeout)
	event.wait_input_change ([timeout])
	event.wait_input_should_exit([timeout])
	event.wait_should_exit(timeout)

	Serial port control functions
	serial_port.create

	Support for Python modules
	Modules (underscore _)
	Modules (a-d)
	Modules (e-h)
	Modules (i-n)
	Modules (o-r)
	Modules (s-t)
	Modules (u-z)

